Heliophage


The IPCC and geoengineering
September 28, 2013, 3:18 pm
Filed under: Geoengineering, Interventions in the carbon/climate crisis

The Summary for Policymakers (SPM) just released by the IPCC’s Working Group 1 (pdf) ends with a para on geoengineering (p21), and this fact is receiving some play in media coverage. Not everyone is writing about it, and very few are putting it high up the story, but it’s there, and as various people have pointed out, last time WG1 reported, in 2007, it wasn’t.

Here’s the para is in full. I’ve annotated it to highlight changes made to the authors’ final draft, prepared after all the review stages of the document and thus forming the text that the governments attending the Stockholm plenary started from:

Methods that aim to deliberately alter the climate system to counter climate change, termed geoengineering, have been proposed. <Before Stockholm this was just “Methods to counter climate change, termed geoengineering, have been proposed” so some more definition has been added] Limited evidence precludes a comprehensive quantitative assessment of both Solar Radiation Management (SRM) and Carbon Dioxide Removal (CDR) and their impact on the climate system. <This was previously the last sentence; I’d assume moving it up is meant to let this point about nescience set the context for the subsequent sentences, rather than to seem to follow from them.] CDR methods have biogeochemical and technological limitations to their potential on a global scale. There is insufficient knowledge to quantify how much CO2 emissions could be partially offset by CDR on a century timescale. Modelling indicates that SRM methods, if realizable, have the potential to substantially offset a global temperature rise, but they would also modify the global water cycle, and would not reduce ocean acidification. <In draft, this sentence began “Modelling shows that some SRM methods have the potential…”: thus a slightly stronger statement about a subset of SRM has been weakened to include all SRM. ] If SRM were terminated for any reason, there is high confidence [emphasis in original] that global surface temperatures would rise very rapidly to values consistent with the greenhouse gas forcing. CDR and SRM methods carry side effects and long-term consequences on a global scale. <the draft said “unintended side effects” not just “side effects”. Piers Forster, one of the authors, tweeted me that “US wanted “unintentional” dropped in last [sentence]. We agreed – only change.”]

If Russian negotiators tried to strengthen the language on geoengineering at the Stockholm plenary, as The Guardian reported that they wanted to, they were singularly unsuccessful. Nevertheless, the inclusion of this quite anodyne paragraph seems to have significance, at least for some people. The ETC group put out a news release “Concern as IPCC bangs the drum for geoengineering“, though it noted that “the text approved in Stockholm fell far short of endorsing geoengineering”. If you’re puzzled about how it is possible to bang the drum for something you aren’t endorsing, ETC’s Jim Thomas, friend of this blog, makes the point more clearly: “We are beginning to hear a drumbeat where geoengineering advocates will use the IPCC’s reports to press for geoengineering experimentation and, eventually, deployment.” So it’s not the IPCC banging, then.

Jim is probably right that we will see some of this sort of thing, and it will be interesting to trace. But ETCs suggestion that talking about geoengineering in some way strays from the IPCC’s mandate to be policy relevant not policy prescriptive strikes me as quite a stretch; “policy relevant” surely includes “relevant to policy that ETC doesn’t support”. For example, the IPCC spends quite a lot of time on what will happen under business as usual. Should it not be doing this?

Jim’s main worry is that the IPCC even mentioned geoengineering, thus “lending legitimacy and respectability to a set of suggestions that were previously considered unacceptable and should remain so.” Jack Stilgoe takes a somewhat similar view about the “premature legitimacy” conferred by mention of geoengineering in the Working Group 1 SPM in an article for The Guardian:

To include mention of geoengineering, and its supporting “evidence” in a statement of scientific consensus, no matter how layered with caveats, is extraordinary.

It’s really not. To begin with, the IPCC was mandated to talk about geoengineering in this report. The scoping meeting which gave the panel its marching orders for the massive fifth assessment specified that all three working groups look at geoengineering (the first, this one, is on the state of play on climate change in the sciences-previously-known-as-natural; the second is on the impacts of climate change; the third is on responses). It’s worth noting that though a fair amount of geoengineering talk buys into the idea that geoengineering became a bigger part of the conversation after the Copenhagen climate summit, and this may be true, the scoping meeting took place before Copenhagen.

Having to look at geoengineering , though, does not mean having to include it in the highly visible SPM — it could have been left in the vastly longer main report. And it might have been. A leaked copy of the an earlier draft of the SPM had no geoengineering paragraph. According to Piers, the authors decided it was necessary because they were mandated to discuss RCP2.6. The RCPs are “representative concentration pathways” – pictures of how greenhouse gas concentrations in the decades to come. RCP 2.6 is a pathway in which it is unlikely for the temperature to rise two degrees over preindustrial, and in which it is possible for the temperature not to rise more than 1.5 degrees.

These numbers matter because the UNFCCC puts particular stock in the 2 degree limit, and IIRC is bound to consider whether the limit should be tightened to 1.5 degrees in 2015. As the concentration pathway that delivers this, RCP2.6 matters. And as the SPM says (p19) when asked to produce a scenario in which greenhouse gases follow the RCP2.6 pathway,

By the end of the 21st century, about half of the [Earth System Models] infer emissions slightly above zero, while the other half infer a net removal of CO2 from the atmosphere. {6.4}

If you have a situation where the scenarios being suggested for crucial policy-relevant outcomes seem likely to involve net removal of carbon from the atmosphere, it makes sense to talk about technologies for carbon-dioxide removal. Thus the geoengineering paragraph in the summary for policy makers. The link to RCP2.6 isn’t explicit, but it’s confirmed by Piers in a couple of tweets.

Govts asked for it at scoping. We had long discussions about raising it to SPM. Massive CDR in RCP2.6 clinched it

ie. RCP2.6 pathway looks attractive but is unattainable without huge unrealistic CDR with side effects etc.

I’m happy with this: as I have argued before, if you are going to talk seriously about the two degree limit intellectual honesty requires mentioning geoengineering. I’m a little surprised that Jack isn’t. His post shows him OK with, or at least resigned to, more extensive discussion of geoengineering in Working Group 2 and Working Group 3; it’s finding it in Working Group 1’s SPM that’s a problematic legitimisation, and especially in finding it at the very end of the summary, which he regards as a special position. I must say I don’t read the placing that way — it comes off more as a position where you put an afterthought, and Piers’s account of its moderately late addition seems to bear that out. Beyond that, saying it’s OK for WG2 and/or WG3 but not for WG1 seems to represent a privileging of the physical sciences that I wouldn’t expect from Jack. How can it be OK to talk about geoengineering in policy discussions but not in a discussion of the science? I’m not sure I’d go as far as Matt Watson does in an interesting post at The Reluctant Geoengineer:

It appears to me that Jack’s piece counters his position that rational debate is the most desirable outcome.

But I am left unsure how Jack differentiates between venues where that debate is good and where it is “premature legitimisation”.

Update: Jack and Matt continue their discussion in the comments at The Reluctant Geoengineer. More from Jim Thomas in the comments here.



Climate geoengineering for natural disasters
March 31, 2013, 5:17 pm
Filed under: Geoengineering, Interventions in the carbon/climate crisis

You can imagine the start of a climate geoengineering programme in a number of ways. The way that most appeals to me is as part of a policy portfolio aimed at reducing the future risks of climate change. This would entail careful consideration of a variety of proposals for reducing incoming sunlight, research into the weaknesses of all of them and the choice of a preferred option. Then, if as the result of a deliberative process that has been going on in parallel to this, with each informing the other, you — for a suitably inclusive, legitimate value of “you” — decide that such risk management is worth trying you start implementing on such a programme, with the aim of slowly but steadily ramping up to the level of offset you have decide is wise, while continuing with other mitigation and adaptation measures.

On the other hand, a programme might be triggered by a specific event — for example, something sudden and dire happening in the Arctic. Some such events (lots of methane coming out of permafrost) might indeed be checked by prompt cooling, though you might need rather a lot of it. Other catastrophes (radical destabilisation of Greenland ice) probably wouldn’t be helped at all. But such an emergency might trigger demands for prompt climate action that politicians found hard to ignore, and climate geoengineering might be the prompt action they turned to whether or not it met the needs of the specific emergency.

I’ve always seen this as a rather worrying scenario. Much better to think carefully about climate geoengineering’s merits and dangers and build it into a portfolio of climate action than to be bounced into it as some sort of new alternative. Among other drawbacks, a programme put together in the context of a climate emergency might have to be sized so as to deliver a dramatic effect — one with a cooling that might be measured in watts per square metre, rather than something a tenth that size — right away. This seems likely to be imprudent.

A new paper by Jim Haywood and colleagues at the Met Office and the University of Exeter in Nature Climate Change brings up a new version of this question, though, one which I find intriguing. What about the use of geoengineering to counteract a natural, rather than man-made, climatic event? Continue reading



Some of what I think about geoengineering

I recently had the great pleasure of attending this year’s Breakthrough Dialogue at Cavallo Point, an event at which the Breakthrough Institute brought together kindred spirits of disparate views to hash out some of the many issues that that Institute takes an interest in. On the basis of this Economist special report I was invited to talk about nuclear power, but in the many fruitful interstices of the meeting found myself talking about geoengineering quite a lot, because this is the sort of crowd where that sort of discussion makes sense, and because I am working on a book on the subject.

Towards the end of the meeting, a friend mentioned to me that perhaps I should be more careful in such conversations – people seemed to be getting the wrong idea about what I believed. This may be the case – I can’t really vouch for what message people were picking up, and I’ll admit that I sometimes run off at the mouth and that jet lag when drink has been taken doesn’t always help matters.

That said, I think there is a danger to being too careful in talking about geoengineering. If all the people who know about geoengineering are meticulous in the care that they take in talking about it, they will create no new misapprehensions – but they may do little to dispel old misapprehensions, and they may pass up the opportunity to carve out for geoengineering a more central place in our ongoing discussion on climate. I think it deserves that place; if I didn’t I wouldn’t be writing a book about it.

But while there may be good reason to be expansive in one’s talk, there’s no good reason for being careless, or even sloppy, in one’s reasoning. I have tried to be pretty careful in published stuff in the past, such as this 2007 piece in Nature and this 2010 piece in Prospect. Some time in the future I hope to provide all the clarity and nuance one could wish for in the book. But for the time being, here are a few key points in my current thinking, expressed with what I hope is appropriate care. Continue reading



Energy and electricity are not the same
January 7, 2012, 6:29 pm
Filed under: Interventions in the carbon/climate crisis

Lord knows this shouldn’t need saying, but it does. Earlier this week I received a press release from a UK green electricity company claiming that for a couple of months last year wind power had provided 10% of the UK’s energy needs. Today, The Guardian prints a Reuters report saying that during the post-christmas gales it was 12.2%. The same report ended up at Scientific American and quite a lot of other places. In both cases the  numbers came from the UK Renewable site (Reuters’ source here) with which I have no beef. But both had taken figures explicitly about electricity consumption and claimed that they reflected total energy use.

I really don’t understand how it is that people sitting in warm homes or offices with cars going past their windows think that electricity and energy are the same thing. But here are the numbers. Page 59 of the latest International Energy Agency figures (pdf) gives TPES (total primary energy supply) for the UK as 197mtoe (million tons of oil equivalent). Converting that into the sort of units electricity is measured in (the IEA provides a handy converter here) you get 2290TWh. In the same table on page 56 you will see that UK net electricity consumption given as 350TWh. So only about 15% of the UK TPES is consumed as electricity.

The two numbers are not quite equivalent. The share of TPES devoted to generating electricity is larger than the amount of electricity consumed, because more than half the energy content of coal and gas burned at power stations doesn’t actually get turned into electricity. So though I don’t have figures to hand on how much of the TPES is devoted to electricity generation, its probably around twice that much, which fits with my sense that about 30-40% of energy supply is used for generating electricity.

Anyway, everyone makes mistakes, but this one is both egregious, distressingly common and genuinely harmful. When people hear that Britain’s rather paltry wind fleet is generating 10% of its energy they are seriously misled about the scale of the decarbonisation challenge. In good months, as far as I can see, wind currently provides a bit less than half of the country’s renewable electricity, which means about 5% of its consumed electricity, which means less than 1% of its TPES.

The renewables company corrected its press release as soon as I pointed out the error. I trust that the Reuters and its subscribers will too.



Steve Schneider, 1945-2010

This week’s Economist carries an obituary of Steve Schneider. Excerpt:

Mr Schneider’s high profile as a proponent of action on climate change—he was the editor of an important journal, Climatic Change, and an influential member of the Intergovernmental Panel on Climate Change (IPCC) more or less from its inception—would have made him a favourite target for such antagonists anyway, but he came in for particular scorn because of his willingness to discuss the inevitable tensions between advocacy and academic integrity. Critics of Mr Schneider, including this newspaper, portrayed him as giving in to this tension, and being willing to tell “necessary lies” when it suited his purposes. He countered such attacks vehemently, saying such a conclusion rested on a slanted reading of what he had said on the subject. He had no time for advocacy without truth.

Many comments and memories on this post of Andy Revkin’s

Also, here’s a review of Steve’s last book, Science as a Contact Sport (Amazon UK|US) I did for China Dialogue. Excerpt:

To sit next to Steve Schneider while listening to someone else give a talk about climate science is like watching a DVD with a commentary track by an insightful but rather grumpy director. As the speaker makes her points, Schneider, a veteran climate scientist now at Stanford University, will mutter about who first made all the interesting points in the talk, and when this or that bit of science was first appreciated, and how stupid people have been not to act on this knowledge years ago.

The purpose is to remind anyone listening than climate science has a history, if a fairly brief one, and that the message of that history is reasonably consistent — scientists have believed much what they believe now about global warming for decades, and if climate scientists in general and Schneider in particular had been listened to better, the world would have faced up to the issue better and sooner.

This personal memoir by Schneider provides a similar effect…

Image courtesy of Stanford, I believe



How many policies does it take to change a light bulb?
October 12, 2009, 12:11 pm
Filed under: Interventions in the carbon/climate crisis
A Greenpeace LED display in Argentina

A Greenpeace LED display in Argentina

My friend Jonathan Rauch — who is undoubtedly one of the best columnists I know — hits what seems to me a rare wrong note in his current column in the National Journal (link subject to rot after a week or so, I think). Riffing off the incandescent light bulbs issue, he moves on to the “don’t regulate, just price carbon” argument. His case against compact fluorescents is that he, and many other consumers, doesn’t find them to be very good, and that the energy savings they make possible will be eaten up by the Jevons (or “rebound”) effect:

Is this a smart way to save some energy? Or, rather, an example of ham-handed environmental grandstanding?

Europhobia aside, there is a case for the phaseout. Incandescents are famously wasteful, emitting much more heat than light. Though cheap to buy, they are expensive to run… Moreover, lightbulbs are low-hanging fruit on the conservation tree. Unlike, say, an air conditioner or a furnace, they are quick and easy to replace. Savings flow instantly. Compact fluorescents may be imperfect, but the new mandate will drive down their prices while stimulating technological advances. Everybody wins.

That case has its points. Nonetheless, I’m going to vote for No. 2: ham-handed environmental grandstanding.

It is true that consumers can and often do undervalue energy efficiency…but replacing your incandescent bulbs with fluorescents is not the same as replacing your low-efficiency refrigerator with a high-efficiency one. As someone who has recently made a good-faith effort to switch, I can tell you that fluorescents deserve their not-ready-for-prime-time reputation…The compact fluorescent lamp, at least in its currently commonplace incarnations, is a lousy product. Consumers who reject it are not necessarily numskulls. Many if not most are exercising a very understandable preference…

The incandescent phaseout is saying: Never mind that you might be willing to raise your summertime thermostat a notch or two in exchange for keeping incandescent bulbs; you still can’t have them. Never mind that your house is full of other potential energy savings; it’s CFLs for you…

Then there is the problem of what Jerry Taylor, an energy analyst at the Cato Institute, calls the rebound effect. Downsizing cars makes driving cheaper, so people do more of it, offsetting some of the gains. Similarly, fluorescents make keeping the lights on cheaper, with the same likely effect.

The Competitive Enterprise Institute’s Sam Kazman notes that in the 1980s a town in Iowa gave out 18,000 free fluorescents in an effort to conserve electricity. “Despite the fact that over half of the town’s households participated, electricity use actually rose by 8 percent. Once people realized they could keep their lights on at lower cost, they kept them on longer.” Having told the public that compact fluorescents cost practically nothing to run and last practically forever, how could we expect people not to leave them on? (I know I do.)

In his fair minded way, Jon points to the strongest arguments on the other side, but I don’t think he gives them sufficient weight. In particular, as he says, the new marketplace is one where we can expect a great deal of competition in terms of better, cheaper and yet more efficient products. It seems to me that this is a really powerful point. With enlightened regulation, governments around the world (and it is important that this is happening in a synchronised way) are forcing innovation into a market where the low price and economies of scale of the previous incumbent technology made the barriers to entry very high. As John points out, if you don’t care much about energy costs, incandescents are a pretty good technology, which is why, as he also notes, compact fluorescents sat around for a long time not getting much better. Now we can foresee a  creative free-for-all that will permit a range of new technologies to compete, and to change the manner in which things are lit more profoundly. As my former colleague Stefano Tonzani noted in a feature in Nature (subscribers only, I think)

The general-purpose incandescent light bulb might not be replaced by a single new source, but by a range of technologies, each suited to a particular use. For example, if organic light emitting diode (OLED) lighting can economically be produced in continuous sheets by industrial roll-to-roll techniques, it will be a natural candidate for flat panels that generate a diffuse glow for area lighting. That would make OLEDs a natural complement to the bright, directional light coming from semiconductor LEDs, which could instead be used for more light-intensive tasks such as reading. Such combinations could lead to new concepts of lighting design, so that architects could help save energy by not wasting light where it is not needed.

It is true that by banning incandescents governments are imposing a cost on current consumers who, like Jon, don’t like fluorescents. But for that one-time cost they are bringing into being a more permissive technological state of play with the potential for far more efficient and better products down the line. (Though I’ll admit, in my turn, that the lower turnover of light bulbs in the post-incandescent era will slow this process down, with people locked into the intermediate CFL technology in a way they haven’t been locked into the often-blowing incandescent technology. Unless, that is, they just throw out old fluorescents, which defeats part of the purpose.) This opening up of innovation seems, on balance, a good way to use regulation.

The way that regulation can change contexts bears on Jon’s more general point that the best thing to do is to simply price carbon, rather than also regulate some activities and piurchase choices that lead to carbon emissions. This seems to ignore the degree to which consumption takes place in a complex system defined, in parts, by regulatory frameworks. There are all sorts of things that make it hard or easy to emit carbon that pricing carbon, in and of itself, doesn’t effect very much, but on which regulations and other government decisions have a huge impact. It is possible, and laudably nifty, to find ways to put new low emissions technology straight into existing systems, for example by making roof shingles that work just as roof shingles always have, but also generate solar electricity. In general, though, changing the price of carbon without changing the system in which people live on its own is going to be a suboptimal strategy. Matt Yglesias was making this point recently while writing about Stockholm buses:

A decision to take the bus is heavily influenced by someone’s decision about where to put the bus stops, where to make the routes go, how frequently to run the buses. [It] is also influenced by the relative paucity of parking spaces in the city, which in turn relates to public policy decisions about minimum parking regulations, maximum allowable density and so forth. …Nobody drives on freeways that weren’t built any more than anyone rides subways that don’t exist.

Whether or not putting a solar panel on your roof makes economic sense depends in part on whether you can sell energy to the grid during surplus periods … Whether or not it makes sense to build a huge wind warm in Kansas depends on whether you have a grid robust enough to transmit that energy to population centers.

We also have regulatory issues limiting our ability to innovate…Multi-family structures are more efficient to heat than are detached houses (it’s a surface area to volume thing) but in many places it’s illegal to build a multi-family structure. So if what you want to do is leave this up to the market, you need to take active legislative steps, not just impose a price and say we’ll let the chips fall where they may.

Nick Stern argues, in a manner that might be seen as fence-sitting but which I find convincing, that carbon markets, carbon taxes and regulations all have roles to play in emissions reduction. Carbon taxes work on transport fuel, for example, in a way that cap-and-trade would not. At the same time, people in Europe don’t think it odd to have fuel taxes as well as regulations on efficiency; the situation reflects, among other things, the fact that fuel taxes high enough to force large efficiency improvements across the whole fleet would prove politically unpalatable. And this seems to me to be a key point. If you insist on thinking that the best thing to do is just to price carbon, even within a system not set up to help people cope with that pricing — if you think that using just the price tool, rather than all the tools, is in principle a superior approach — you have to face the fact that in some cases, for some types of emission, a price that makes a real dent in emissions is not going to be politically feasible. This is the territory on which Boxer-Kerry, and all such attempts to impose prices, will be fought. If a carbon price causes real pain to big significant lobbies it becomes very hard to set. Unless you can solve that,  gains made through regulations seem a reasonable path.

As to the Jevons effect: yes, but… Yes, efficiency gains tend to spur consumption, to a degree that is often ignored, and this means efficiency does not represent the cornucopia of low-hanging fruit that it is sometimes suggested to be. But as Jon honestly points out, this effect does not necessarily eat up all the efficiency gains.  What’s more, there is a time lag between the efficiency gain and the increase in use, and that time lag represents real saving. There is also the point (systems thinking again) that in the presence of energy taxes or other complementary interventions we might expect the size of the effect to be diminished (another reason why we have both efficiency standards and fuel taxes).

And we should not forget that it is possible to saturate the effect, at least in specific modalities. If I keep my house well insulated, efficient-boilered house warm enough to suit me, I will be emitting less carbon than I did when it was less well insulated and the boiler less efficient (this is a hypothetical example: I hope to make it a real one in the next year or so). And once things are efficient, I am unlikely to turn the house into a sauna just because I can. Similarly, I can look forward to a time when I will have a range of devices in my house that allow me any level of illumination up to that of bright daylight and down to that of dim moody glow in any room, with keylights and fills and bounces and spots and so on allowing me to compose my my experience like my own director of photography  — and the whole thing will still consume less energy than having a bunch of incandescent bulbs doing a less good job. Of course, the money I save may be used on some completely different sort of consumption. But the more that is done to make consumption of all sorts more efficient, the less that worries me.

I don’t discount the Jevons effect; it is real and powerful, and shows that efficiency alone is not enough. But within an overall system which is trying to make it sensible for people to use less energy while having better experiences in all sorts of ways, the effect can I think be diminished.

Image from Martin Acosta/Greenpeace, used in accord with these conditions.



Heroes of the Environment 2009 — David Keith

It is time again for the annual feast of fun that is Time’s Heroes of the Environment list. As always it is a thought provoking reminder of how narrow my environmental issues are. Climate and energy issues dominate what I think of under that rubric but here there is lots of room for good old fashioned pollution: mines, dirty rivers, rubbish and the like. Not to mention bloody organic farmers, and various people who would not really make my list (Pen Hadow? Really?)

But climate and energy do top the bill: Mohamed Nasheed of the Maldives leads off the whole package, and there’s a nice spread about Joe Romm, who gives his take on the honour here. (Nice note of irony: the piece on Joe Romm is written by Bryan Walsh, eviscerated by Joe earlier this year for a piece that took the Breakthrough Institute’s line on energy R&D; in last year’s Heroes Bryan profiled the Breakthrough Institute’s founders  Ted Nordhaus and Michael Shellenberger.)

My contribution this year (following Jim Lovelock in 2007 and Kim Stanley Robinson in 2008) is on David Keith, who I imagine is probably suitably embarrassed by the whole thing; but to my mind deserves the recognition. His heroism consists of thinking hard and clearly about things other people are hardly thinking about at all. That has let him do a great deal to help frame and further the debate on geoengineering, which needed to be done, and now he’s pursuing ideas about direct air carbon captur, which again can but benefit from the serious attention. It also makes him one of the best people to talk to about climate and energy issues, bar none. Excerpt:

David Keith, studiously avoiding mad scientist cliches

The brains have arrived, Master (©2008 Ewan Nicholson)

Early success in pure physics (his graduate project, supervised by a professor noted for his mentoring of future Nobelists, was a long-awaited experimental breakthrough in atomic optics) did not satisfy him. Climate work promised a greater opportunity to do good while at the same time throwing up what ambitious physicists always want most: questions no one yet knows the answers to.

Soon he was working on nitty-gritty climate-modeling problems while learning economic and policy analysis. That breadth has helped him communicate climate concerns to the often skeptical energy industry; it’s also part of why he is listened to by people like Bill Gates, who relies on meetings organized by Keith to stay up-to-date on climate science. “While he’s got informed and strong opinions,” Gates says, “he’s also incredibly open-minded, pointing out the unknowns in his opinions and just as readily pointing out the merits of others’ opinions.”

It’s been a good press weekend for David. He has a Perspectives piece on air capture that’s part of a package on CCS in last Friday’s Science; that got picked up on John Tierney’s NYT blog.

Image of David Keith by Ewan Nicholson, used with permission, all rights reserved




Follow

Get every new post delivered to your Inbox.

Join 33 other followers