Heliophage


Perennial wheat progress
October 8, 2009, 10:41 am
Filed under: Farming

Perennial wheat at the Land Institute

A week or so ago, Jeremy had an interesting post at the agricultural biodiversity blog on developments in the field of perennial wheat. Perennial wheat would be cheaper to farm than conventional wheat — less fertilizer, pesticides, sowing costs, tilling costs, etc. The advantages get even greater under some conditions when you look at factors such as increased soil moisture and soil carbon and reduced erosion. So perennialisation of wheat and other crops has lots of fans.

Those fans have to bear in mind, though, that being perennial and still being a proper crop is a hard trick to pull off, as Gary explained some while ago:

It takes great energy to live long and prosper. Stores must be set aside, stored in roots, during the salad days of the growing season. This leaves little energy for seed production since that is a very metabolically costly act. A plant that can do both is a super plant that can suck up water and nutrients with unprecedented skill, capture sunlight like no existing plants, convert sunlight to sugars with unprecedented efficiency, and so have the wealth to set seed in useful quantities while still having enough surplus to set aside energy stores for the lean season and so survive another year.

So you have to expect a trade off between grain yield, and possibly grain quality, and perennialisation.  The study Jeremy points us to, by Lindsay Bell of the University of Western Australia and colleagues, finds that if the perennial wheat is good quality stuff the savings on inputs mean that it could make sense to grow it even if the yield was only 60% of the yield in the annual wheat it was replacing (though obviously more would be nicer). But Jeremy also points to another benefit the research found for mixed farms — that of providing flexibility through growing something that can be used as forage as well as grain.

On a mixed farm that raises sheep as well as wheat, a dual-purpose perennial grain that offers forage, especially early in the growing season, can “greatly increase whole-farm profitability” according to the study. Even if grain yield is only 40% of annual wheat, a perennial wheat would be worth including on 12% of the farm area. The study points out that “this demonstrates that there is capacity to trade-off grain yield for forage production from a perennial cereal”.

Elsewhere in Australia (specifically, in Cowra, NSW, where the cherry-blossom festival just finished) they are embarking on some field trials to see if perennial wheat can actually make it through the summer in a useful way.

Image from wikimedia commons user Dehaan, under a creative commons licence



Revising and reprising the Green Revolution
September 17, 2009, 10:32 am
Filed under: Farming

Norman Borlaug in Africa (from Agbioworld)

Norman Borlaug in Africa (from AgBioWorld)

In the wake of Norman Borlaug’s death, Tyler Cowen posts a link to this fascinating piece of what I suppose should be called revisionist history, “Norman Borlaug’s Complicated Legacy” by Nick Cullather. Cullather’s interests seem to be in the broad field of diplomacy by other means, with one of those other means being food; this paper, available on line is a thought provoking history of the political and social meanings of the calorie.  In the Borlaug piece he is very interesting on what was actually going on in terms of food in Asia in the 1960s. For one thing, the bumper 1968 crop may have had a fair deal to do with climate (specifically ENSO) and increased wheat prices (following a dropping off of food aid to Asia, which had been suppressing them) as well as the introduction of dwarf wheat varieties. Also, he points out that it is possible that predictions of impending mass famine made in the 1960s and early 1970s were not accurate-for-the-world-they-were-made-in-but-confounded-by-the-subsequent-technological-improvements — the standard narrative — but rather would have been proved wrong anyway. Counterfactuals — whattcha gonna do? (According to Cullather, Borlaug himself had little time for the “doomsayers”.)

Which is not to say that Borlaug did nothing, or that science did not provide far more high yielding crops in the 1960s and 70s (there’s a personal account of how that research was brought together into the CGIAR system in an article Lowell Hardin did for Nature a couple of years ago). What Cullather does in his piece (and presumably in his forthcoming book, which is called “The Hungry World” or “Parable of the Seeds” depending on the source you ask, and which I now eagerly await) is tease out what that meant in terms of changing the ways people thought and acted, personally and politically:

The Rockefeller and Ford foundations set out to change the mentality and politics of rural Asia.  Food was their tool.  “I’ve worked with wheat, but wheat is merely a catalyst,” Borlaug explained.  “I’m interested in the total economic development in all countries.”  Development meant installing progressive leaders, like military dictator Ayub Kahn, and the Philippines’ Ferdinand Marcos who ran for office on the slogan “progress is a grain of rice.”  By requiring imported fertilizer and fuel, the new grain production strategy broke India’s planned economy, forcing Gandhi to divert resources from industry and devalue the rupee.  Borlaug and President Lyndon Johnson saw this as a victory.  In retrospect it’s less clear.  China and India were evenly matched in 1966, but China continued its industrial drive without letup.

Borlaug believed the process of high-yield agriculture would change the mentality of farmers.  The dwarf wheats required cultivators to precisely regulate water and chemicals, to set aside beliefs in nature and custom and put trust in technology.  It made peasants into scientists.   He expected this new attitude to affect their relations with their leaders, each other, and their families.  They would follow the profit motive, and he hoped, have fewer children.  The link between the new seeds and state birth control and sterilization programs was so plain that in many countries it was rumored that the seeds caused impotence. “If only that were true,” Borlaug sighed.  “We would really merit the Nobel Peace Prize.”

At a time when farming was marginalized in his own country, Borlaug recognized that agriculture was intimately connected with human life, and consequently with every political act.  More than feed the world, he aimed to change it.  Asked if he considered himself an extension agent to the world, he shook his head.  “No,” he replied.  “We move governments.”

There’s a list (which I have left out in order further to encourage you to go and read the article) of unintended consequences, including Maoism in the Philippines and the secession of Bangladesh, which impressed me, though I should note that aspects of it are disputed in comments on the piece, and I’m not in a position to judge the merits.

It all makes you ask what we should be thinking about in terms of a second green revolution for Africa. It’s not enough to just say there’s a need for biotechnology (which there is), or that that need has to be looked at in the context of  “technical, agronomic and institutional factors” (which it does, as this review of Robert Paarlberg’s powerful and influential “Starved for Science” makes clear). Beyond that which such contexts do for agriculture is that which agriculture does for and to those greater contexts. What future changes are we looking for in how people think and believe, as well as how they farm — and what are they themselves looking for? How should we conceptualise personal changes in practice as political acts? And how deeply wrong will be in our expectations?

All that said, Borlaug’s contribution was immense, and he was a great presence to be in. I was deeply impressed when I heard him speak a few years back. The last word goes to my friend Anna, third-personified by her Facebook page:

Anna clip

Image from AgBioWorld, permission to use requested



The biochar backlash
March 30, 2009, 11:07 am
Filed under: Farming, Geoengineering, Interventions in the carbon/climate crisis

Interest in biochar has been building up in the UK recently. There was a cover story by Fiona Harvey in the FT a month ago with a familiar headline, Jim Lovelock and James Hansen have been extolling its virtues, it’s been on the Today Programme (text here on BBC News), there are new technologies being talked up and there’s an interesting looking workshop at the newly established UK Biochar Research Centre in Edinburgh on April 1st. And so of course there is also a backlash: last Monday George Monbiot, whose written on such subjects before,  delivered a stirring oppositional salvo in the Guardian (and here’s the link to the version on his own site, same text but with references — a good habit more newspaper columnists should take up):

This miracle solution has suckered people who ought to know better, including the earth systems scientist James Lovelock(3), the eminent climate scientist Jim Hansen(4), the author Chris Goodall and the climate campaigner Tim Flannery(5). At the UN climate negotiations beginning in Bonn on Sunday, several national governments will demand that biochar is eligible for carbon credits, providing the financial stimulus required to turn this into a global industry(6). Their proposal boils down to this: we must destroy the biosphere in order to save it.

In his otherwise excellent book, Ten Technologies to Save the Planet, Chris Goodall abandons his usual scepticism and proposes that we turn 200 million hectares of “forests, savannah and croplands” into biochar plantations. Thus we would increase carbon uptake, by grubbing up “wooded areas containing slow-growing trees” (that is, natural forest) and planting “faster-growing species”(7). This is environmentalism?

But that’s just the start of it. Carbonscape, a company which hopes to be among the first to commercialise the technique, talks of planting 930 million hectares(8). The energy lecturer Peter Read proposes new biomass plantations of trees and sugar covering 1.4 billion ha(9).

In their book Pulping the South, Ricardo Carrere and Larry Lohmann show what has happened in the 100m ha of industrial plantations planted around the world so far(16). Aside from trashing biodiversity, tree plantations have dried up river catchments, caused soil erosion when the land is ploughed for planting (which means the loss of soil carbon), exhausted nutrients and required so many pesticides that in some places the run-off has poisoned marine fisheries.

In Brazil and South Africa, tens of thousands of people have been thrown off their lands, often by violent means, to create plantations. In Thailand the military government that came to power in 1991 sought to expel five million people. Forty thousand families were dispossessed before the junta was overthrown. In many cases plantations cause a net loss of employment. Working conditions are brutal, often involving debt peonage and repeated exposure to pesticides.

As Almuth Ernsting and Rachel Smolker of Biofuelwatch point out, many of the claims made for biochar don’t stand up(17). In some cases charcoal in the soil improves plant growth; in others it suppresses it. Just burying carbon bears little relationship to the complex farming techniques of the Amazon Indians who created terras pretas. Nor is there any guarantee that most of the buried carbon will stay in the soil. In some cases charcoal stimulates bacterial growth, causing carbon emissions from soils to rise. As for reducing deforestation, a stove that burns only part of the fuel is likely to increase, not decrease, demand for wood. There are plenty of other ways of eliminating household smoke which don’t involve turning the world’s forests to cinders.

This kicked off a whole week of biochar stuff in the Guardian. Various people criticised came back to say that they were really talking only about making biochar from crop waste: here’s Jim Lovelock’s benevolent response and here’s a slightly pricklier one from Hansen and Kharecha. Chris Goodall also came back in a let’s find common ground sort of way, and there were letters pro and con. Peter Read’s right-to-reply piece, by way of contrast, comes out fighting.

This degraded land [a large amount of land discussed in Read’s biofuel plans] is former forest that has been logged over and abandoned – not, as Monbiot says, “land occupied by subsistence farmers, pastoralists, hunters and gatherers”. Given the chance, impoverished people often opt for a waged income. Does Monbiot wish to keep them impoverished for ever?

In reality there is not the shortage of land Monbiot implies but a desperate shortage of investment in the land. His “global total” of 1.36bn hectares of arable land does not include 2.38bn of unused potential arable land reported by the UN’s Food and Agriculture Organisation, into which such investment, eg irrigation, might go. Moreover, the productivity of the 1.36bn could be raised with biochar pyrolysed from currently wasted agricultural residues, thus linking carbon removal with increased food supply and incomes.

Monbiot misses the point that the need for land-use improvements comes from the threat of climatic catastrophe. With too much carbon in the atmosphere and oceans, some of it has to be removed and put somewhere safer. Using the gift of nature – photosynthesis which enables green plants to use the sun’s energy to absorb atmospheric carbon – is the only economic way.

The remedy is not “an easy way out” but needs hard work and good policy resulting in, to quote last year’s Sustainable Biofuels Consensus, “a landscape that provides food, fodder, fibre, and energy; that offers opportunities for rural development; that diversifies energy supply, restores ecosystems, protects biodiversity, and sequesters carbon.”

George comes back in kind:

I wasn’t harsh enough about Peter Read. In his response column today he uses the kind of development rhetoric that I thought had died out with the Indonesian transmigration programme.

To him, people and land appear to be as fungible as counters in a board game. He makes the extraordinary assertion that “degraded land” – which he wants to cover with plantations – is uninhabited by subsistence farmers, pastoralists or hunters and gatherers. That must be news to all the subsistence farmers, pastoralists and hunters and gatherers I’ve met in such places. Then he repeats the ancient canard that, by denying such people the opportunity to have their land turned into a eucalyptus plantation/hydroelectric dam/opencast mine/nuclear test site/re-education camp or whatever project the latest swivel-eyed ideologue is trying to promote, we are keeping them in poverty.

Has he learnt nothing from the past 40 years of development studies? Does he not understand that development is something that people must choose, not something that can be imposed on them from on high by megalomaniacs?

It should be fairly obvious to everyone who’s not just in this for the aggro that there will be good biochar interventions and bad ones. Forcing biochar on people or soils that don’t want it or can’t prosper with it will not help; helping people to find systems that are biochar friendly could quite possibly provide the win-win prospects everyone wants to see. As usual, Gary has sensible things to say about this, with helpful comparisons to the use of manure and lime as soil additives — as might be expected from someone whose ideas are rooted in practice and who has been blogging on this topic a lot while remaining impressively self-critical.

My biggest worry about the technology is that its strengths could have within them a fatal flaw. The soil is an easily reached reservoir, and provides a multiplier effect that’s crucial to the efficacy of biochar: the carbon stored in biochar schemes is not just the carbon in the charcoal, it’s the increased organic carbon in the rest of the soil. But easily reached is also easily breached, and multipliers can work two ways. If people use biochar to store a lot of carbon in soil, but not enough to forestall significant warming (which is a not unlikely scenario in the world biochar enthusiasts imagine) then they’ll have provided an extra bolus of soil carbon to be respired back into the atmosphere by the warmer, and thus harder working, soil bacteria; they will have effectively traded emissions now for emissions later. So the carbon could quickly come right back out. If the microbial priming effect kicks in in this scenario — with the easily mobilised carbon providing enough energy for the bacteria to tackle more refractory carbon they would normally ignore —  you might end up with not just with the carbon you stored away leaking out, but also some of the carbon that was already there. This is a subject on which I’d like to see more research before squirelling away the odd gigatonne of carbon.

Further resources: International Biochar Initiative, CSIRO biochar report (pdf), Biofuelwatch

Image borrowed from www.vividaria.it, rights neither asserted not inquired into, happy to remove if owners object



My Ada Lovelace day post: Constance Hartt
March 24, 2009, 7:05 am
Filed under: Farming, Plant physiology, Warning: contains molecules

Sugar cane in Hawaii

Sugar cane in Hawai'i

Cheryl made me aware of the excellent idea of a synchronised posting about women in technology in honour  of Ada Lovelace (my image of whom, for what its worth, was set irevocably and doubtless unreliabley by Bruce Sterling and Bill Gibson in The Difference Engine). I said I’d join in, and my subject is Constance Hartt, about whom I know very little, but whose work is of fundamental importance to people trying to understand the evolution of photosynthesis over the past 30 million years or so, and also to opening up the possibility of radical improvements to various crops.

Hartt was a laboratory researcher at  the Hawaiian Sugar Planters Association Experiment Station, and her assiduous work on the biochemistry of sugar cane in the 1930s and 1940s convinced her that, for that plant at least, the primary product of photosynthesis  is malate, a four carbon sugar. Later carbon-14 studies showed that she was right — and led to an interesting conundrum. Why did some plants — most plants, indeed, and almost all algae — make a three carbon sugar, phophoglycerate, while sugar cane and, it later became clear, various other grasses made a four-carbon sugar?

The answer lies in the process of photorespiration. The enzyme which fixes carbon into phosophglycerate, rubisco, is very ancient and rather easily confused — left to itself it will sometimes grab oxygen molecules rather than carbon dioxide molecules, and instead of making phosphoglycerate makes phosphoglycolate. This is no good to man nor beast nor, most tellingly, plant: recycling the phosphoglycolate made accidentally in this process of photorespiration into a form of carbon that can be used for further photosynthesis takes energy, and thus making less phosphoglycolate in the first place is a good thing. The malate-initiated photosynthesis that Hartt was instrumental in discovering is an evolutionary response to that problem: malate is part of a clever biochemical/physiological supercharger that concentrates a great deal more carbon dioxide into the cells where rubisco is doing its thing, thus making it less likely to commit that costly error with the oxygen.This supercharging system is known as C4 photosynthesis, the 4 denoting the number of carbons in malate; the regular sort of photsynthesis is called C3 in contrast.

C4 photsynthesis confers various advantages: in particular, it makes plants more efficient in their use of water. The mechanisms that concentrate carbon dioxide mean that the pores through which it is taken up, the plant’s stomata, don’t have to be as wide open as they would be otherwise, and thus less water is lost. C4 plants resist various sorts of stress better, including  direct sunlight and salty ground. The mechanism has evolved independently many, many times over the past 30 million years or so, mostly but not entirely in the grasses, which either have a propensity for the sorts of physiological re-design that is required or are particularly prone to finding themselves in the sort of niches where this approach helps, or both. Sugar cane is not the only domesticated or agriculturally relevant example — there’s also maize and sorghum, and for energy crops switch grass and miscanthus, among others. There is now considerable interest in building the pathway into some grasses that have not learned it naturally — most importantly rice. C4 rice, with higher water use efficiency and other extra hardiness, might have considerably higher yields than traditional varieties while needing less water (my colleague Emma wrote a little about this not so long ago, though her words are behind the Nature paywall).

This knowledge and potential all flows from the work of Hartt and her colleagues in Hawai’i. It was small scale stuff, and more or less by defintition the team was isolated form the mainstream. Their work was for some time almost forgotten, and may still not be as well remembered as it should be; the elucidation of the C4 pathways took place in Australia a decade or so later, and that work tended, afterwards, to eclipse the discovery work done in Hawai’i. The secondary sources that I have say little about Hartt, other than noting the devoted careful work she invested in the subject, and giving the impression that the team she worked in, led by a sweet sounding Quaker called Hugo Kortschak, was a friendly and happy one.

Do I think she is a great unsung scientist? Well unsung, yes. Great, probably not. But whenever one looks into the history of science — or indeed into the way it goes today — one sees that you do not need to be great to matter, to discover, to move the story on, or to fulfill yourself through it. She and her colleagues, tucked away far from the mainstream, trying to do some good, discovered something of profound importance for science, and perhaps, in time, for technology and humanity. What more is needed?

Many more Findingada posts to be found at this central site, or  via twitter, or by searching for AdaLovelaceDay09 on delicious or Technorati

Update: Gary has some wise words on the subtleties of C3 and C4. His point that C4 plants tend to be protein poor is a good one (though in a higher CO2 world that might even out a bit, as the rubisco content in C3 plants will drop whereas in C4 you’d expect it to stay the same, ceteris paribus) and reminds me of Arnold Bloom‘s idea that photorespiration might help with nitrate assimilation. His bigger point is that ceteris paribus is a poor way to see the world, and that to concentrate on any single factor, such as C3 v C4, is to overlook a great deal that you should probably be paying attention to. And that’s true.

Image from Flickr user _Wiedz, used under a creative commons licence



A couple more bits from Copenhagen
March 15, 2009, 10:00 am
Filed under: Farming

Some things I blogged over at Climate Feedback

Food Insecurity: A sobering presentation by Marshall Burke of Stanford on future agriculture. He and colleagues looked at historical climate and yield data for various crops in various parts of the world and projected the relationship they found into various future climates as found in the IPCC. As the IPCC itself reported, much of the tropics did badly in this analysis, and the worst performer was maize in southern Africa which was down in yield by about 30% by 2030. [Full post>

Who’s reporting?: I had a look this morning at a breakdown of the press registration at this conference by country. Clear winners are Denmark and the UK, with 40 or so people each. Both of those are inflated figures, because some third-country and international organisations are covering the meeting out of Copenhagen and London (Japanese TV stations are listed as UK, for example, as is Al Jazeera English). But still there is a lot of genuine UK interest: national papers and the BBC. And the locals are out in force. [Full post>

And for those interested in such things, here’s the twitterfeed from the plenary, though I suspect this is now the electronic equivalent of something in which to wrap up fish and chips.



Leaf albedo engineering
Lets brighten this up...

Let's brighten this up...

I wrote a little piece for Nature today today about a paper by Andy Ridgwell at Bristol and some of his colleagues on changing the albedo of crops. The gist as published:

Manipulating the waxiness of crops through traditional breeding techniques or genetic modification should raise their albedo by about 20%, from 0.2 to 0.24. On the basis of climate modelling they calculate that the planet would cool by a modest 0.11 ºC. “It’s very small on the global average,” says Ridgwell. But “what is more important is the summertime effect in specific regions”. The mid-latitudes of North America and Eurasia could cool by as much as 1 °C in June, July and August, according to the models. Ridgwell and his colleagues report their results in Current Biology.

The models also show pronounced cooling in the North Atlantic Ocean and the Barents Sea in the wintertime — which might have a positive effect on sea ice — but a drying out of the soil in some parts of the subtropics. Ridgwell points out that climate models do not predict future precipitation well on a regional basis and treats the latter results more as evidence that there might be effects far from the fields being changed than as a clear indication that there would be damaging consequences.

There are some interesting details and implications to this “bio-geoengineering” scheme. Though you might think that reflecting more light off the surfaces of leaves means less photosynthesis, according to the paper the evidence in the literature suggests not. This may be because more reflective leaves stay cooler and more efficient; another possibility is that the light is reflected mostly from leaves in direct sunlight (which are not constrained by a lack of light) and some of what is reflected ends up with leaves that are in shadow (which are constrained by lack of light). More detailed studies, of course, may show that in fact photosynthesis does go down.

Making the plants more reflective, if it proved a good idea at all, might well necessitate genetic engineering, which in some places is distrusted. That engineering might be more acceptable in energy crops than it is in food crops. It might make sense, if people are going to engineer energy crops for other purposes, to make them a little lighter too, all other things being equal.

Another point is that this is very small beer as geoengineering goes. A similar but more dramatic proposal along similar lines by Robert Hamwey (pdf)  has a radiative forcing of about 0.6 Wm-2, which is smallish by the standards of the CO2 forcing; I would guess if they expressed it in the same way the forcing in the Ridgwell et al scheme would be a good bit less than that. But it might still have some marginal utility. This is a trend I suspect we will be seeing more and more of in  geoengineering studies  over the next few years, a shift away from totalising projects such as sunshades for the whole earth and layers of aersosol all through the stratosphere towards smaller regional and semi regional ideas.

Talking about this trend Tim Lenton has suggested that we may be moving towards a discussion of geoengineering that has some similarities to Socolow’s “wedge” approach to decarbonization: breaking the big problem down into smaller lumps that feasible technologies could bite off and chew; as I report in the Nature piece, Tim and some colleagues are looking at setting up a unit to compare geoengineering schemes and their potential payoffs on this basis. I’m not sure this is necessarily a good development. Every geoengineering scheme has strange knock-ons and side effects around the edges, and it seems reasonable to suspect that the more such schemes you have, the more chance there is for one of the side effects to be unexpectedly serious  — or for two of them to interact with each other catastrophically. But that said, the fact that it is probably a lot easier to find little forcings than big ones suggests that the portfolio approach may be in the ascendant for a while.

Image from flickr user ecstacist under a creative commons licence



Paul Collier’s prescription
November 26, 2008, 12:48 pm
Filed under: Farming

Dawn, Brazil

While traveling last week I finally got round to reading Paul Collier‘s “Politics of Hunger” article in Foreign Affairs, and I recommend it. It lays out the basic driver of high food prices — fast income growth in Asia and an income elasticity for food of about 0.5, so that a 20% increase in earnings leads to a 10% increase in demand for food. But as he says, in a simple, logical way, “There need be no logical connection between the cause of a problem and appropriate or even just feasible solutions to it.” His solutions are

three politically challenging steps. First, contrary to the romantics, the world needs more commercial agriculture, not less. The Brazilian model of high-productivity large farms could readily be extended to areas where land is underused. Second, and again contrary to the romantics, the world needs more science: the European ban and the consequential African ban on genetically modified (GM) crops are slowing the pace of agricultural productivity growth in the face of accelerating growth in demand. Ending such restrictions could be part of a deal, a mutual de-escalation of folly, that would achieve the third step: in return for Europe’s lifting its self-damaging ban on GM products, the United States should lift its self-damaging subsidies supporting domestic biofuel.

He makes some other points, too: avoid export restrictions and don’t let the French use the crisis as a way of boosting the Common Agricultural Policy. But his three key points are the article’s theme, and they resolve into a short term, medium term and long term strategy. In the short term, the US ethanol subsidies can be rescinded, in principle, purely through legislation. To begin with, as he points out (and as others have too) they are indefensible in terms of their stated aim:

If the United States wants to run off of agrofuel instead of oil, then Brazilian sugar cane is the answer; it is a far more efficient source of energy than American grain. The killer evidence of political capture is the response of the U.S. government to this potential lifeline: it has actually restricted imports of Brazilian ethanol to protect American production. The sane goal of reducing dependence on Arab oil has been sacrificed to the self-serving goal of pumping yet more tax dollars into American agriculture.

Getting rid of the subsidy, Collier argues, would immediately lower food prices through two routes; it would reduce an artificially maintained competing demand, ad it would reduce the basis for price speculation. For the medium term, he puts his faith in policies that expand large scale commercial farming, in part because it is in a position to respond to increased prices by spending on the inputs needed for increased production, but also because he believes it is better placed to be innovative.

Innovation, especially, is hard to generate through peasant farming. Innovators create benefits for the local economy, and to the extent that these benefits are not fully captured by the innovators, innovation will be too slow. Large organizations can internalize the effects that in peasant agriculture are localized externalities — that is, benefits of actions that are not reflected in costs or profits — and so not adequately taken into account in decision-making. In the European agricultural revolution, innovations occurred on small farms as well as large, and today many peasant farmers, especially those who are better off and better educated, are keen to innovate. But agricultural innovation is highly sensitive to local conditions, especially in Africa, where the soils are complex and variable

A model of successful commercial agriculture is, indeed, staring the world in the face. In Brazil, large, technologically sophisticated agricultural companies have demonstrated how successfully food can be mass-produced. To give one remarkable example, the time between harvesting one crop and planting the next — the downtime for land — has been reduced to an astounding 30 minutes. Some have criticized the Brazilian model for displacing peoples and destroying rain forest, which has indeed happened in places where commercialism has gone unregulated. But in much of the poor world, the land is not primal forest; it is just badly farmed. Another benefit of the Brazilian model is that it can bring innovation to small farmers as well. In the “out-growing,” or “contract farming,” model, small farmers supply a central business. Depending on the details of crop production, sometimes this can be more efficient than wage employment.

His long term play is GM, over a 15-year plus timescale.

The GM-crop ban has had three adverse effects. Most obviously, it has retarded productivity growth in European agriculture. Prior to 1996, grain yields in Europe tracked those in the United States. Since 1996, they have fallen behind by 1-2 percent a year. European grain production could be increased by around 15 percent were the ban lifted. Europe is a major cereal producer, so this is a large loss. More subtly, because Europe is out of the market for GM-crop technology, the pace of research has slowed. GM-crop research takes a very long time to come to fruition, and its core benefit, the permanent reduction in food prices, cannot fully be captured through patents. Hence, there is a strong case for supplementing private research with public money. European governments should be funding this research, but instead research is entirely reliant on the private sector. And since private money for research depends on the prospect of sales, the European ban has also reduced private research.

However, the worst consequence of the European GM-crop ban is that it has terrified African governments into themselves banning GM crops, the only exception being South Africa. They fear that if they chose to grow GM crops, they would be permanently shut out of European markets. Now, because most of Africa has banned GM crops, there has been no market for discoveries pertinent to the crops that Africa grows, and so little research — which in turn has led to the critique that GM crops are irrelevant for Africa.

It seems to me an exceptionally well put together, thoughtful article, and well worth your attention.

Image of a Brazilian farm from Flickr user de Paula FJ, used under a creative commons licence. Pretty sure this isn’t a big high yielding commercial farm — but it is pretty…



Michael Pollan on food and farming
October 30, 2008, 8:14 pm
Filed under: Farming, Global change, Interventions in the carbon/climate crisis

Laxness, illness, holiday and day job have made me a particularly slack blogger recently, for which I apologise. Here’s something I should have written a few weeks ago

If I were writing Eating the Sun now (Amazon US|UK, since you ask…), rather than a couple of years ago, the biggest difference would probably be that there would be more about food and farming in it. The fact that photosynthesis is where food ultimately comes from is of course there in the book (it’s actually the theme of one of my favorite passages) and agriculture crops up in various places and guises. But it could have been worked in more deeply — something Jeremy Cherfas’s review picked up on — and in today’s climate it certainly would have been.

So this passage in Michael Pollan’s recent piece in the New York Times — a letter to the new president on reassessing the politics, business and culture of food in America — struck a chord:

The core idea could not be simpler: we need to wean the American food system off its heavy 20th-century diet of fossil fuel and put it back on a diet of contemporary sunshine. True, this is easier said than done — fossil fuel is deeply implicated in everything about the way we currently grow food and feed ourselves. To put the food system back on sunlight will require policies to change how things work at every link in the food chain: in the farm field, in the way food is processed and sold and even in the American kitchen and at the American dinner table. Yet the sun still shines down on our land every day, and photosynthesis can still work its wonders wherever it does. If any part of the modern economy can be freed from its dependence on oil and successfully resolarized, surely it is food.

The key point in the piece — that the food business accounts for about 20% of US fossil fuel use — is an important one, and the article has received a great deal of pick-up, including by its intended reader, as interviewed by Joe Klein.

I was just reading an article in the New York Times by Michael Pollan about food and the fact that our entire agricultural system is built on cheap oil. As a consequence, our agriculture sector actually is contributing more greenhouse gases than our transportation sector. And in the mean time, it’s creating monocultures that are vulnerable to national security threats, are now vulnerable to sky-high food prices or crashes in food prices, huge swings in commodity prices, and are partly responsible for the explosion in our healthcare costs because they’re contributing to type 2 diabetes, stroke and heart disease, obesity, all the things that are driving our huge explosion in healthcare costs.

There’s much in the article to like, though I must say that I wish Pollan would take a leaf out of George Monbiot‘s book and put up references on his website to the various unnamed studies he cites. And I wish he’d give percentages as well when he gives crude numbers, and vice versa. If you don’t do that you don’t give a real quantitative sense of the state of play, and you engender the feeling that you are using the numbers more for rhetoric than clarification: are 4700 farmers’ markets in the US a lot or a little?

As I say, though, there’s much to agree with. Perennialisation, for example, makes a lot of sense to me, if it can be got to work, as do winter cover crops, and making sure farmers markets take food stamps. An increased reliance on polycultures and controls on antibiotic use and agricultural pollution from intensive livestock operations all seem reasonable, and the second two seem things a regulatory regime might bring about. It seems to me that he’s less clearly right on fine tuning, as opposed to cutting, subsidies; if you redeploy subsidies (which I think is what he is suggesting) you’ll just encourage new ways to farm the subsidy. It might be easier, as well as cheaper, to scrap subsidy than to create subsidies that can’t be gamed and have no unintended harmful consequence. But I’m not dogmatic on that, and I certainly think doing something about subsidies for vast grain farms is a good idea.

He’s also oversold, it seems to me, on organic food and becoming locavores. Shipping food long distances does not necessarily give it a higher carbon footprint than locally sourced food. Ocean shipping (and for that matter the sort of truck shipping that a company like Walmart does) can be pretty energy efficient. There is a much cited study showing that New Zealand lamb, consumed in the UK, is a much better carbon bet than Welsh lamb, consumed in the UK (James McWilliams wrote about this in the NYT); Michael Specter wrote a terrific piece in the New Yorker about this and other subtle aspects of the “food mile” idea that reveal its woeful oversimplification. The fact that it can make economic sense for food to be shipped from A to B even if very similar food is being shipped from B to A — biscuits from Denmark to America and America to Denmark, for example — is, as I understand it, the basis of the work for which Paul Krugman just won the Nobel Prize. Both parties get economies of scale that offset the transaction costs, and there seems to be no theoretical reason why this would not be so in many cases even if full environmental externalities were accounted for. (No false modesty in the “as I understand it” — I may have this wrong and would welcome knowledgeable correction.)

On organics, there are a bunch of problems. For me the starting point is that some of the goals organic farming prizes are right: but the assertion that achieving all those goals is best done with no industrial inputs whatsoever is an ideological shackle that leaves the movement fatally hobbled, and open to the criticism that its a scam designed to create artificial market segmentation and elite price premiums. In short I agree with Gary Jones at Muck and Mystery, who actually makes a living from the land:

Balanced fertility in healthy soils growing improved crop cultivars gives the best nutrition and taste while continuously improving soil.

There are good practices that are approved by organic regulators but they are good practices in any agronomic system. Maintaining soil organic matter by using green and brown manures, no-till cultivation, leaving crop trash in place, cover cropping and intercropping is just good practice. Attention to soil micro and macro organisms is also good practice.

But, the effective use of manufactured fertilizers is one of the best ways to increase soil organic matter and achieve balanced fertility. The use of some GMOs makes perfect sense though not all. The effective use of some pesticides and herbicides in an integrated pest management system makes perfect sense.

We need to move beyond these lack wit notions and support good growers without fussy taboos that defy scientific evidence and reason.

Organics are also frequently oversold. If the “recent University of Michigan study” Pollan looks to for evidence that organic farming can feed the world is this one, then it seems to me that the criticisms of it here are pretty strong (yes, that attack on the work comes out of the Hudson Institute; seems pretty well argued though.)

Organic farming is also not necessarily good for the climate: sometimes it’s harmful. A UK government report (pdf) which my friend Tom pointed out to me last year gives figures from a study at Cranfield University for chicken production which show that normal industrial production uses less energy and has less acidification and eutrophication potential than free range and organic alternatives. For milk the conventional uses slightly more energy but has less global-warming, acidification or eutrophication impact; in both cases organic uses more land.

I think Pollan’s wrong to imply that polyculture in itself will drastically reduce the need for energy-intensive fertilizers. Farmers were using fertilizers long before the shift to monocultures; farmland has always lost fertilitity over time. And putting fertility back with sunlight alone is hard — you can do it for nitrates, given time, and of course for soil organic matter, but it doesn’t really happen at all for phosphates. There are no phosphate-fixing microbes, because there’s (thankfully) no suitable gas in the atmosphere for them to fix. When it comes down to it, anything that you take from farmland that’s not carbon, hydrogen and oxygen will need to be replaced sometime: all the sunlight gives you is carbohydrates. Replacement will take energy, and that means more sunlight somewhere else driving renewable generation of some sort, or the use of fossil or fissile fuels. (Exporting less protein from farms can reduce the inputs you need, since more nitrogen etc stays put; but that means convincing people to eat less meat, which while probably a good idea for many of us is a bit beyond the president’s powers, I suspect.)

You can substitute muscle for some inputs: labour intensive farming can replace energy intensity in farming to some extent. But who’s going to do that? If you want labour intensive farming, surely you’re best trying to get it going in places where labour is cheap — which is to say not the US. John McCain was undoubtedly wrong to claim that native born Americans won’t pick lettuce even at $50 an hour. But it is true that Americans don’t at the moment seem to like farm labour as a career much, and that if it takes $50 an hour to change their minds then lettuce is going to be very expensive. So Pollan may claim that “We need more highly skilled small farmers in more places all across America … The revival of farming in America … will generate tens of millions of new ‘green jobs’,” but who is going to fill them? When he writes “We emptied America’s rural counties in order to supply workers to urban factories” it’s not clear who “we” are, and why the workers who were passively supplied aren’t included in “our” number. Seems to me the workers made a choice — a constrained one, of course; they all are — and it is not clear how “we” or anyone can reverse that choice. They have seen Paree; it will be hard to get them back down on to the farms. This may be false consciousness; people might be a lot happier on farms, wresting their bread from the earth by the sweat of their brows. But I think it will be hard to convince them this is so.

More or less arbitrary Washington farm image from flickr user Darhawk, used under a Creative Commons licence. The picture of Obama I couldn’t find details for and will remove if anyone objects.



Prince Charles — not my hero
October 25, 2007, 5:14 pm
Filed under: Farming, Nature writing, Published stuff

Since one of the infrequent commenters here actually asked, I dug up what I wrote about Prince Charles (One of Time’s Heroes of the Environment) in Newsweek International, June 14th 1999. It’s basically just another example of my tedious banging on on the subject of “nature”, but still current, in that I don’t think my views on this aspect of the subject have changed much in the intervening eight years.

Getting Nostalgic About ‘Nature’

In the debate over genetically modified crops, the question isn’t what’s natural–it’s what’s right. And that’s hard political work.

One of the few diverting aspects of Britain’s largely joyless European election campaign has been the Natural Law Party’s approach to the issues. Other parties say simply that a particular version of Britain’s relationship with the rest of Europe would be a rather good or bad thing–whatever. The Natural Law Party [now defunct, alas], on the other hand, promotes the values of Transcendental Meditation and yogic flying, an advanced form of the art which consists of flapping your knees while bouncing around in something like the lotus position. Apparently this has already lessened levels of violence in both Merseyside and the Middle East. The Natural Lawyers do, however, have one concrete political policy. The party wants a Europewide ban on all genetically modified crops.Prince Charles

In this, if in little else, the Natural Law Party is very much in the mainstream. The British public has taken against genetically modified crops in a big way. Activists uproot them and supermarkets attempt not to furnish their customers with them. This week the Prince of Wales–a landowner and organic farmer–came out against them for the umpteenth time, a piece of non-news that still managed to provoke headlines throughout the realm.

Europeans have in general been more skeptical about genetically modified crops than Americans, who have so far swallowed the idea, and the food, with relatively few qualms. And among the Europeans the Brits have been particularly adamant in their refusal to have any truck with such things. The recent history of British agricultural politics–the culling of millions of cows for fear that their increasing madness was spreading into the population at large–has left the public profoundly distrustful of unnatural tinkering in the food chain. The prince says that he wants us to reject all genetic modification and instead work with nature for the long-term benefit of humankind.

The problem with this desire is that nature has no interest at all in the long-term benefit of humankind. Nature has no interest in anything. And even if it did, mankind has been overriding nature routinely for millennia. That’s what agriculture is all about. A natural Britain would be a woodland that could feed only a few–when not covered by the glaciers of a natural ice age. Selective breeding–a subject royalty understands in its bones–removed nature from the farmyard long before the first endonucleases started to cut up the first artificial strands of DNA.

People like the prince use nature not biologically but nostalgically, to refer to a time when things were not so dashed artificial. This is the perennial window dressing of the reactionary, nature as an ideological prop for people whose notion of what is natural tends to include their own position in society. For the prince–doubtless considered by many, if not himself, as Britain’s natural sovereign–nature is part of our very souls, which is why we have an instinctive nervousness about tampering with it. His love for authentic British farming practices is thus part of his sense of what the nature of the British people is, an ideology of blood and the Soil Association.

It is no shock that a man whose own genes have a constitutional importance should worry about genes elsewhere. And some issues that the prince brings up are legitimate causes for concern. The effect of genetically altered organisms on the wider environment needs to be understood better than it is today. The idea that this technology may be controlled by very few companies is disturbing. It fuels widespread fear that genetic modification will serve only as a handmaiden to agribusiness, rather than producing higher-yielding crops to be distributed equitably among farmers in developing countries. But these are all arguments for getting the genetic modification of crops right, technically and politically: not for abandoning it as intrinsically immoral simply because it is unnatural.

The question is not what is natural. It is what is right. Reaching a judgment about that means balancing a lot of different issues and interests: the freedom a company should have to pursue profit within the law; the fear of harm to health or the environment; the altruistic wish to develop technologies that genuinely help developing nations; the self-interest that leads people to want cheaper or better food. Balancing these things is hard political work. But it is possible, and democracies have shown themselves in the long run to be pretty good at it. Democratic efforts to such ends, however, are not helped by a counterproductive nostalgia. Beingyogic flying unhelpful is not against the law, nor should it be. But the fact that Charles gets a platform on such matters purely because of the situation he was born into is still offensive. The bouncy-bottomed Natural Law Party may stand for a lot of tosh, but at least it stands for elections. That puts it one up on the prince.

Prince Charles picture from Smileykt on a creative commons licence; yogic fliers copyright apparently unknown.

 



Jatropha and biofuels beyond corn
October 13, 2007, 12:12 pm
Filed under: Farming, Interventions in the carbon/climate crisis

JatrophaSome things we have in Nature this week prompt me to a catch-up post on biofuels.

If you’re talking about photosynthesis as an energy source, then you’re talking about biofuels, and you have to respect both their promise and their pitfalls. They cannot be a wholesale replacement for fossil fuels. But they are already a large part of the energy economy in many poor countries, where the rural population relies on gathered firewood. Enhancing the efficiency of this biomass use (and replacing it with other renewable sources where possible) would be a worthwhile development goal simply in terms of reducing indoor air pollution. Beyond that, solid and liquid biofuels may have potential in various situations and niches. And by enriching soils, growing biofuels may also draw down some carbon from the atmosphere and tuck it away.

To make this work, though, we need to do two things. One is to find out how best to grow and use the most promising biofuel crops. Another is to stop wasting time and money and goodwill on corn-based ethanol and various low efficiency temeperate-climate-based biodiesel schemes.

We addressed both of these issues in Nature this week. My colleague Daemon Fairless reports from India on jatropha, a much touted oil crop.

Although there is reason to be enthusiastic about jatropha’s potential as a biodiesel feedstock in India and beyond, there is one rather sobering concern: despite the fact that jatropha grows abundantly in the wild, it has never really been domesticated. Its yield is not predictable; the conditions that best suit its growth are not well defined and the potential environmental impacts of large-scale cultivation are not understood at all.jatropha plantation “Without understanding the basic agronomics, a premature push to cultivate jatropha could lead to very unproductive agriculture,” says Pushpito Ghosh, who has been working on the plant for the best part of a decade, and who is now director of the Central Salt and Marine Chemicals Research Institute (CSMCRI) in Bhavnagar.

I think it’s a fine and thought provoking read (and benefits from the fact that our recent redesign has encouraged sometimes robust discussion in the new comments threads).

We also have a leader on biofuels more generally, posted here in its entirety

Kill king corn

Biofuels need new technology, new agronomy and new politics if they are not to do more harm than good.

Zea mays has become the very emblem of plenty, with rich golden cobs of corn (maize) overspilling from some of the most effectively farmed arable lands on the planet. Jatropha curcas, on the other hand, is an unprepossessing and indeed toxic plant, better suited to scrubland and hedges. Yet in the world of biofuels, ugly-duckling jatropha has the potential to be, if not a hero, then at least one of the good guys, and a harbinger of better things to come. The golden-headed siren corn, on the other hand, is inspiring a wrong-headed gold-rush — to a dead-end of development that is polluting the modest aspirations the world might have for biofuels in general.

The common complaints about biofuels — and they seem to become more common by the day — are that they are expensive and ineffective at reducing fossil-fuel consumption, that they intensify farming needlessly, that they dress up discredited farm subsidies in new green clothes, and that they push up the price of food. All these things are true to some extent of corn-based ethanol, America’s biofuel of choice, and many are also true of Europe’s favoured biodiesel plans.

As far as the greenhouse goes, figures from the International Institute for Sustainable Development’s Global Subsidies Initiative put the cost of averting carbon dioxide emissions by using corn-based ethanol at more than $500 a tonne of carbon dioxide. What’s more, the heavy use of nitrogen fertilizer in growing corn leads to significant emissions of nitrous oxide, an even more potent greenhouse gas.

Despite this, the generous tax allowance of 51 cents a gallon given to ethanol blenders in the United States has made corn peculiarly profitable (provided that tariffs continue to keep out far more efficiently produced ethanol from the sugar plantations of Brazil). In a recent article in Foreign Affairs, C. Ford Runge and Benjamin Senauer of the University of Minnesota in Minneapolis point to estimates that this artificial price-hike will drive world corn prices up by 20% by 2010. This has a knock-on effect on other staple crops — more land for corn means less for wheat, for example. Higher prices are good news for farmers, including some of those in developed countries. But they can be bad news for the very poor, who spend a disproportionate amount of their income on food. According to World Bank studies, for the poorest people in the world a 1% increase in the price of staple food leads to a 0.5% drop in caloric consumption.

This sorry state of affairs has the small benefit of providing a stark, contrasting background against which to sketch out what a successful and sustainable biofuels industry might look like. It will be based not on digestible starch from staple crops such as corn or cassava, but for the most part on indigestible cellulose, with some room for biodiesels that, because they grow on marginal land, do not compete with food production. In the medium to long term, it will not seek to produce ethanol — a poor fuel — but a range of more complex fuels delivered by carefully designed microbes.

A rosy biofuels future will enjoy the benefits of free trade, allowing the countries and peoples of the tropics to ship some of their abundant sunlight north in the form of fuel. It will also require serious amounts of agronomic research — as we report on page 652, one of the most significant problems with jatropha is that, as yet, remarkably little is known about how best to grow and improve it. One focus of such research must be in the development of plants, such as jatropha, that make do on little water, and those that require low inputs of nitrogen. This is inherently more feasible in the case of fuels, where all that needs to be taken out of the system are carbon and hydrogen, than in the case of food, where there is a need to export nitrogen in the form of protein as well. Another focus will be on systems that actively store carbon in the soil, improving it for future agricultural use and at the same time doing a little bit more to take the edge off the carbon/climate crisis.

Biofuels are unlikely ever to be more than bit-players in the great task of weaning civilization from Earth’s coal-mine and oil-well teats. But they may yet have valuable niches — including some that allow them to serve some of the world’s poor, both as fuels for their own use and as exports. Provided, that is, that someone kills king corn.

A few links for those wanting more: Biofuels : Is the cure worse than the disease? (pdf), is a much talked about recent document from the OECD, and the ins and outs of its reception are discussed on the FT’s website. The point about greenhouse emissions from heavily fertilised biofuel crops was made recently by Paul Crutzen and others in this paper (pdf) discussed by Chemistry World and Futurepundit; the conversely optimistic point about biofuel plantations not needing to export nitrogen and thus opening up low intensity options has recently been raised by Robert Anex of Iowa State in work discussed here on the Biopact site. Biomass polycultures leading to increased soil carbon is the subject of a much discussed paper by David Tilman and colleagues in Science last year. This summer the FT ran an op-ed by Jacques Diouf of the UN Food and Agriculture Organisation on trade and development issues around biofuels. And then there’s John Mathews’ thought provoking Energy Policy article Biofuels: What a Biopact between North and South could achieve (subscription required), which is I think the first place I’ve seen the term “ergoculture” contrasted with agriculture.

Images from Valerio Pillar, www.jatropha.org and ~dabbler~, formerly jowo under creative commons license with thanks